Водородная энергетика, технологический прогресс и экологическая безопасность в отрасли черной металлургии. Прямое восстановление оксида железа водородом.
Метод прямого восстановления железа водородом в наши дни, как технологический процесс, остался без изменения – специально подготовленная, то есть обогащенная, руда, - концентрат, где содержится основной окисел железа восстанавливается в шахтной печи с помощью твердого топлива, как это было в древности, или для этой цели используется конвертированный газ – природный метан, но преобразованный в смесь водорода и угарного газа (СО).
3Fe2O3+H2= 2Fe3O4+H 20 Fe3O4+H2=3FeO+H 2O FeO+H2=Fe+H 2O
Как установлено в настоящее время, можно восстанавливать концентраты руды, которые еще не превращены в окатыши. Более того, оказалось, что концентрат восстанавливается даже с большей скоростью, чем изготовленные из него окатыши. Однако на пути к реализации этого процесса стоят трудности чисто технологического характера.
Наиболее интересным способом восстановления оксида железа, является возможность использования водорода в режиме горения. Сам процесс восстановления пойдет достаточно быстро, более того, при этом не возникает лишних примесей: продукт восстановления – железо и вода. Однако получение и хранение водорода сопряжено со множеством чисто технических и экономических трудностей. Поэтому водород пока что используют лишь для получения металлических порошков.
Существует технология среднетемпературного восстановления оксида железа, когда протекает процесс горения и прямого воздействия водорода при температуре 470-8100С. Восстановитель – водород или в чистом виде, или с примесью окиси углерода. Железо, естественно, находится в твердом состоянии, образуя при восстановлении своеобразную губку.
Анализ приведенных выше данных дает основания для следующих выводов:
-
Среди реакций восстановления оксидов железа водородом только реакция (1.1) является экзотермической. С ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этой реакции будет уменьшаться;
-
Реакции (1.4), (1.7), (1.10) являются эндотермическими. Поэтому с ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этих реакций будет увеличиваться.
Влияние температуры на изменение состава равновесной газовой фазы для каждой из реакций восстановления оксидов железа водородом показано на рисунке 1 пунктирными линиями.
Следует обратить внимание на то, что кривые, характеризующие составы равновесных газовых смесей для реакций восстановления оксидов железа оксидом углерода и водородом, пересекаются при температуре 8100С. Из анализа реакции водяного газа известно, что при соблюдении условия
Оксид углерода и водород при этой температуре обладают одинаковым химическим сродством к кислороду.
При температурах выше 8100 С водород обладает большим химическим сродством к кислороду. Поэтому при восстановлении оксидов железа водородом объемное содержание восстановителя в газовой фазе может быть меньше, чем при восстановлении оксидом углерода.
При температурах ниже 8100 С более высоким химическим сродством к кислороду обладает оксид углерода.
Конечным продуктом везде являются железо, вода и углекислый газ, причем воду можно снова использовать для получения водорода и кислорода. Таким образом появляются реальные возможности осуществить замкнутый цикл восстановления железа водородом и создать безотходное производство.
Однако до сих пор водород получают двумя испытанными методами – гидролизом воды и ее электролитическим разложением, проще говоря, электролизом. Существует , правда, химическое разложение, более выгодное, но оно не столь распространено, на что имеется ряд чисто технических причин. Поиск новых способов продолжается, ибо важность проблемы несомненна.
Использование водорода для нужд черной металлургии – реальность сегодняшнего дня, и это возможно с применением водородных турбогенераторных установок, созданных на основе научного открытия НППСО «Грантстрой» авторами Аракелян Г.Г., Аракелян А.Г., Аракелян Гр.Г. – ранее неизвестного явления двухстадийного высокотемпературного окисления углеводородов водой (диплом № 425) и изобретения «Способ получения водородсодержащего газа в турбогенераторной установке» (патенты № 117145 от 20 июня 2012 г., № 2269486 от 10 февраля 2006 г., № 2478688 от 10 апреля 2013 г.).
Впервые в мировой практике при проведении научных и опытно – конструкторских работ при испытании водородной турбогенераторной установки нового поколения в соответствии с патентом на изобретение № 2678688, учеными ЗАО НППСО «Грантстрой» было выявлено уникальное новое явление – восстановление окиси железа водородом.
Данное обстоятельство не входило в план и программу лабораторных работ по изучению получения водорода в турбогенераторной установке. При анализе газов, выходящих из водородной турбогенераторной установки, научными работниками была использована промежуточная горизонтальная газоотводящая труба диаметром 279 мм, толщиной стенки 8 мм и длиной 2500 мм, полностью покрытая окисью железа с наружной и внутренней сторон, находившейся около 10 лет под воздействием окружающей среды (осадки и т.д.) (рис.2)
Рис. 2. Начало проведения лабораторных исследований.
Задачами, поставленными перед учеными в данный период испытаний, являлись определение температуры горения водорода на выходе газоотводящей трубы при помощи термопара ТП (предел определения температуры до 1500оС) и анализ газов с применение прибора «Тесто-300». Время проведения эксперимента составило около 35 минут. За этот период было обнаружено, что воздействие водорода при температуре горения 900оС на используемую в данном опыте газоотводящую трубу способствовало процессу восстановления окиси железа в внутренней стороны на 100% по всей толщине и частично с наружной стороны за счет воздействия горючего водорода, который выходил в ограниченном количестве. (рис.3)
Рис. 3. Восстановление окиси железа водородом.
Достоверные факты, опытно-экспериментальные исследования и как показано на Рис.1, что кривые 5, 5а и реакция восстановления оксида железа пересекаются при температуре горения водорода 9000С – все это даёт полное основание заявить о возможности применения водородных турбогенераторных установок в металлургии для восстановления оксида железа водородом с фантастически низкой себестоимостью, что открывает возможность приступить к переработке отходов на рудниках в виде оксида железа, объем которых во всем мире составляет около 1 трлн.250 млрд. тонн, и которые нарушают экологическую стабильность в регионах, активно добывающих и перерабатывающих железную руду.
Предварительные расчеты и первые эксперименты показали: возможность получать водород с такой низкой себестоимостью, что «водородная металлургия» обретет, наконец, надежную экономическую основу с учетом полной экологической безопасности водородного восстановления оксида железа.
Как видно, существует необходимость введения в металлургию прямое водородное восстановление оксида железа, обеспечивающее безотходное производство в черной металлургии.
Прямое водородное восстановление оксида железа – только начало технологического прогресса в черной металлургии. Но и остальные звенья – будь то конвертеры, электропечи, заводы-автоматы, аппараты малооперационной технологии – требуют хорошего исходного сырья. Им будет восстановленный водородом оксид железа.
Металлургию будущего не без основания часто называют водородной. В настоящее время водород обходится дорого. Его получение, хранение и транспортировка сопряжены со множеством чисто технических проблем. Однако произведенные эксперименты и предварительные расчеты показывают, что можно получать водород с такой низкой себестоимостью, используя изобретение ЗАО НППСО «Грантстрой», что «водородная металлургия» обретет надежную экономическую основу. А если учесть полную экологическую безопасность водородных турбогенераторных установок, то сомнение в том, что именно они предопределяют будущее металлургии, открывающее огромные возможности в современном мире.
(В данной статье в том числе использованы материалы с веб сайтов и учебных пособий)
Доктор наук, заслуженный рационализатор-изобретатель РФ, заслуженный строитель России Г.Г. Аракелян
г. СТАВРОПОЛЬ
2014 г.
|